کاربردهای موجک در حل معادلات دیفرانسیل جزئی و معادله پینلوی

thesis
abstract

اخیرا به توسعه جواب های عددی متناظر در حل معادلات دیفرانسیل معمولی و جزئی توجه زیادی شده است. یکی از جدیدترین تحولات در ریاضیات کاربردی استفاده از نظریه موجک ها است. امروزه نظریه موجک ها جایگزین نظریه های کلاسیک از جمله تفاضلات متناهی، تبدیلات لاپلاس و روش کلاسیک نظریه فوریه برای حل مسائل مختلف کاربردی شده است. مراکز صنعتی و آزمایشگاهی تحقیقاتی نیز با بکارگیری روش های موثر تقریب موجکی سعی در بالابردن کیفیت محصولات و دقت آزمایش های خود دارند. این نظریه جدید ریاضیات کاربردی موثرترین پل ارتباط علم ریاضیات نظری به عملی است که بکارگیری نتایج این علم در مراکز صنعتی و تحقیقاتی احساس می شود.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

تعدیل وردشی شبکه در حل معادلات دیفرانسیل با مشتقات جزئی دو بعدی

در روش وردشی برای تعدیل شبکه، شبکه تعدیل پذیر به عنوان نگاره یک شبکه ثابت یکنواخت روی یک دامنه محاسباتی تحت تبدیل مخنصات مناسب بنا می شود. این تبدیل می نیمم کننده یک تابعک معین می باشد که میزان خطا را در نتایج عددی اندازه می گیرد. در این راستا یک تابع نشانگر تجویز می شود تا تعدیل شبکه را کنترل کند. در این مقاله یک تابعک تولید و تعدیل شبکه که تعریف آن بر نگاشت های همساز روی خمینه ها استوار است، ...

full text

حل معادلات دیفرانسیل معمولی-جزئی مرتبه کسری با موجک هار

هدف از این پایان نامه معرفی موجک هار و بیان کاربردهای آن است که در پنج فصل گنجانده شده است. ابتدابه بیان تعاریف اولیه و روابط معادلات دیفرانسیل کسری می پردازیم. سپس توابع موجک هار و لژاندر را مطالعه می کنیم. در ادامه معادلات کلاین گوردن و سینوی-گوردن و نقطه جنبشی نوترون را معرفی می کنیم.

تعدیل وردشی شبکه در حل معادلات دیفرانسیل با مشتقات جزئی دو بعدی

در روش وردشی برای تعدیل شبکه، شبکه تعدیل پذیر به عنوان نگاره یک شبکه ثابت یکنواخت روی یک دامنه محاسباتی تحت تبدیل مخنصات مناسب بنا می شود. این تبدیل می نیمم کننده یک تابعک معین می باشد که میزان خطا را در نتایج عددی اندازه می گیرد. در این راستا یک تابع نشانگر تجویز می شود تا تعدیل شبکه را کنترل کند. در این مقاله یک تابعک تولید و تعدیل شبکه که تعریف آن بر نگاشت های همساز روی خمینه ها استوار است، ...

full text

حل معادلات دیفرانسیل و انتگرال با توابع والش

هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شیراز - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023